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Two-Stream Instabilities
in Guiding-Center Plasmas

for Antihydrogen Recombination Schemes

Ronald Stowell and Ronald C. Davidson

Plasmna Physics Laboratory Princeton University, Princeton, NJ 08543

Abstract. Two-stream instabilities are studied analytically in the guiding-center kinetic regime,
which is chosen in order that the results may be applied to the mixing of antiprotons and positrons
preceding antihydrogen recombination. The guiding-center kinetic description is valid for a range
of parameters which includes cases in which magnetic fields are 3 - 5T; temperatures are 4 -
10K; positron densities are I0 - 10 cm-3 ; and antiproton densities are 10

4 - 2x 0 cm-3 . The
species occupy long, cylindrical columns coaxial with an outer, conducting, cylindrical wall. Plasma
column radii are between 0.05 and 0.3 wall radii. A constant, axial, externally generated magnetic
field permeates the system. Linear stability of the plasma is studied as a function of the species'
temperatures, densities and column radii; the mean antiproton velocity; and wavenumber. Drifting
Maxwellian distribution functions are considered.

INTRODUCTION

For fifteen years, cold, stationary antihydrogen has been sought [1, 21 for use in funda-
mental experiments, including tests of the equivalence principle of general relativity [1]
and the CPT symmetry of the standard model [3]. The protracted nature of this effort
is the result of technical challenges, such as deceleration and cooling of the constituent
species [4, 5] and, nonetheless, exceedingly slow recombination rates [6]. Only recently
have cold antiprotons and positrons been allowed to interact, though no attempt has been
made yet to detect recombined antihydrogen [7].

As the experimentalists successfully accumulate antimatter, collective descriptions
of the interacting species will become more useful. Accordingly, plasma phenomena
with which we are familiar in other contexts may appear. In particular, two-stream

instabilities, manifest as the electron-proton (e-p) instability in proton storage rings [8],
could occur in antihydrogen traps when the constituent species are mixed. There is free
energy to drive this instability because the system in not in thermal equilibrium during
mixing. The following describes preliminary research toward assessing the possibility
of two-stream instabilities in cold antimatter plasmas and finding the regimes of stable
operation of the traps.

1 Research supported by the United States Department of Energy, and in part by the Office of Naval
Research.
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Currently there are two distinct collaborations seeking to synthesize cold antihydro-
gen at rest in the laboratory frame. Each group has its own scheme for inducing re-
combination. The ATHENA collaboration is considering a method described as follows.
Antiprotons are sent into a cloud of positrons where the antiprotons are cooled by colli-
sions with the positrons [9]. Escaping antiprotons would be caught electrostatically and
sent back into the positron cloud. The ATRAP collaboration releases bunches of cold
antiprotons from an electrostatic well into a positron cloud [7]. As long as ATHENA's
antiproton densities are extremely low, a plasma description is not appropriate. However,
this will change as ATHENA will ultimately seek to increase production of antihydro-
gen. A plasma model is already useful for ATRAP's parameters.

GENERAL THEORETICAL MODEL

It may be worrisome that the coupling parameter r = -e2/(41tn/3) 1/3] /k,1 T is only
one or two orders of magnitude smaller than unity. Even a modest improvement in
densities or temperatures will force the system into the regime of a Wigner liquid.
However, for the parameters presently envisioned, a plasma description of the antimatter
is valid.

The geometry considered is shown in Fig. 1. Two cylindrical, coaxial plasma columns
of equal radius, composed of positrons and antiprotons, are coaxial with an outer,
cylindrical, conducting wall. The antiprotons move through the cloud of positrons which
are stationary on average. Some important approximations which are made to solve the
problem mathematically are as follows. Bunches, or clouds, of particles of finite extent
are treated as having infinite length. This is a valid approximation if we study the system
on a scale much smaller than the bunch length. For the present purposes, the bunches
are also treated as having the same radius, uniform density and Maxwellian unperturbed
distribution functions fso. Our attention is restricted to azimuthally symmetric perturbed
distribution functions f,,. The externally generated part ý' of the electrostatic potential
0 is assumed to be constant in space and time. Collisions are not included in the analysis.

B -i

z • 0

antiprotons

1 stationary positrons

FIGURE 1. Geometry Considered.

From the values of the antihydrogen trap parameters in Nonneutral Plasma Physics

74



12 [10, 11, 12, 13], it can be seen that, for relevant temporal and spatial scales, the

antimatter plasmas fall within the gyrokinetic regime, which is, by definition, the regime
in which o)/(%jp, (e4/Te+)(kpLp) 2 , kll/k. and PLs/L, are small quantities [14, 15, 16].
Here o) is any frequency considered, o, is the cyclotron frequency for species s, 0
is the electrostatic potential, Ts is the temperature of species s, k is any wavenumber
considered, PLs is the Larmor radius for species s and L, is the perpendicular length of
the system. The subscripts "I" and "11" indicate components perpendicular and parallel
to the magnetic field B, respectively. Furthermore, the plasmas are in the drift kinetic
regime, which is, by definition, that part of the gyrokinetic regime in which k±pLp < 1.
The plasmas are in the guiding-center kinetic regime, which is, by definition, that part
of the drift kinetic regime in which (ops/(O2 <K 1 for each species, where o,, and po
are the cyclotron and plasma frequencies, respectively, for species s.

From (o/o)cfp < 1, it follows that the E x B drift is much greater than the polarization
drift. Since Te+/eo <K 1, where 0 is the electrostatic potential, the E x B drift is much
greater than the curvature and VB drifts. The Banbs drift [17, 18] is extremely small.

If the longitudinal and transverse waves are decoupled, we may further restrict atten-
tion to the electrostatic approximation,

V.E= _V 2 (osef± ex) = 47c I qsfd3vfs. (1)
sE {e+,f}

Here Oself and Oext are the parts of the electrostatic potential due to the plasma and external
sources, respectively, q, is the charge of species s, fs(r, v, t) is the distribution function
for species s and v is velocity. Since, for each species, the collision frequencies vss, are
small compared to the plasma frequencies COps, collisions may be neglected.

The above approximations lead to the collisionless guiding-center kinetic equation

af. +cE x Bl] vilVIlfs + qs Ell Lf =I-7 -- • iVifs+ Vjf+-ms -= O. (2)
a3t B2  js ain

The distribution functions fs have units of volume- . velocity- 3 . The quantity ms
is the mass of species s. In cylindrical coordinates (r,pz), with a constant, axial
magnetic field B = B2 and 40x" independent of position and time, Eqs. (1) and (2)
may be simplified. Perturbing the result about an equilibrium solution (fe+o,fOo,Oo)
which is independent of (p and z and applying the Fourier-Laplace transform (Fs, (D) =
(27r)- 2 fidzf6"dpfdodt e-i(e(P+kzz-t)(fs, 4 •er) where Im[o] > 0, to the three first-
order equations for the perturbed solution (fe+i,fp l,ýP) yields an inhomogeneous
initial-value problem. The corresponding homogeneous equation is

2 - - (0, ,
3 v r a r

ErJr r2  ZInso~ t) - Ao ,(r) - kzv

2 The radius of ATRAP's positron bunch was estimated from Fig. 1 of reference [10] to be 0.15mm.

The radius and length of ATHENA's antiproton bunch and the radius of ATRAP's antiproton bunch were
estimated from ASACUSA's data [ 11] to be 0.1 cm, 5.0 cm and 0.1 cm, respectively. All other data appears
numerically in the appropriate articles [10, 12, 131.
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where owt = -cEo(r)/rBo is the equilibrium ExB rotation frequency. Here the sub-
scripts 0 and I indicate unperturbed equilibrium quantities and perturbed quantities,
respectively. The boundary conditions are that 4 is zero at the wall, finite on the trap's
axis and continuous at the plasma edge. The dispersion relation is obtained using the
additional condition found by integrating Eq. (3) across the plasma edge.

APPLICATION TO COLD PLASMAS

By "cold," it is meant that both parallel thermal velocities are small compared to the
average parallel velocity of the antiprotons. In this special case, which is a simple place
to begin,

fso = no nH(rb - r) G(v,) 8(v, - uszo). (4)

Here ns0 is the equilibrium density, which is constant in space; H is the Heaviside
step function; rb is the plasma radius, which is the same for both species; and G(v.)
is an arbitrary distribution in perpendicular velocity space normalized according to
2rtfodv±vG(v) = 1. If(4) is used with C = 0, Eq. (3) may be simplified to

2' (5)
k2 + k2 (, - kzus,0)2

where kr solves

kz K(kzr,)Il(kzrb) + Kl(kzrj,)o(kzr,,) +k J(krri,)-0. (6)
Ko(kzr,,)Io(kzrb) - K(kzrb)Io(kzr) +" Jo(k,.rb)

Here, us is the average velocity of species s; r, is the wall radius; and I, J,, and K,& are
Bessel functions. The transcendental equation (6) may be solved for kr(kz), which, for
any particular value of kz, is quantized with a radial mode number n. The solutions for
kr, which are displayed in Fig. 2, are then substituted into (5).

krrb

12 = 4

83

2n =2

-2 -1 1 2 3
logl 0 krb

FIGURE 2. Solutions to (6). For a given radial mode number n, the upper and lower branches are for
rb,/r, = 0.3 and 0.05, respectively, which bound the range of values of rb/r,,. of practical interest.
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Using Mathematica•, the quartic equation (5) for w was solved both analytically and
numerically with the same results. Eq. (5) has four roots. One root is unstable for a
range of values of k,. The unstable root, for physical values of the trap parameters, is
shown in Fig. 3. The oscillation frequency Re[wo]/ope+ and the growth rate Lm[co]/ope+

are displayed as functions of kzupzo/&ope+. As expected [19], for a cold plasma, the

maximum growth rate scales as oe1/3 (0o2/3

ATHENA 8 ATRAP
15 103 xRe{-] --- 6 102 xRe[--] 0

L te•+ J 6 Lpe+ )

10 102xjm

5 2

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 1.2
kzupzo/ ,)pe+ kzufizo / )pe+

FIGURE 3. The unstable root of (5) forn= 1. The left and right plots are for ATHENA and ATRAP, re-
spectively; rh/rw is 0.1 and 0.125, respectively; op,t4 -t is 380 and 44, respectively; and upzo/ (op,+ rh)
is 5.8x 10-4 and 8.4x 10-4, respectively.

APPLICATION TO DRIFTING MAXWELLIAN PLASMAS

Now the unperturbed distribution functions are allowed to have nonzero parallel thermal
velocities Vtsz:

nso0H(rb - r) G(v.) exp[ (vz - uszo) 2 12 2vtsz/ 2 sz J

If Eq. (7) is substituted into Eq. (3) with e = 0, Eq. (3) takes the form

- Is••s( + i On- (0o- kzusz° exP~kvsV- w 7ztzz (c- kzuszO ) 2] 1l+_erf i(o - kzuszOkvtz/

___ ___ (ov s ý,2-kzvusz/ 2- kzvs /

=k,,+k2, (8)

where XDS = Vtsz/Ops is the Debye length for species s, erf(z) = (2/ /•)fzdte-t 2 and
kr solves (6), exactly as for a cold plasma.

Using Mathenmatica@, the transcendental equation (6) for kr(kz) was solved numeri-
cally, and the result was substituted into the transcendental equation (8), which was also
solved numerically. For ATHENA's and ATRAP's parameters, it is found that there is a
critical average velocity for the antiprotons below which the system is stable. In these
cases and in all others examined, it was found that the critical velocity of the antipro-
tons is the positron thermal velocity times a number of order unity. For both ATHENA's
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and ATRAP's parameters, typical maximum growth rates are found to be of the order of
01/3 W2/3

Ipe+ipi when UpzO/Vtsp» 1.
In the second section, terms scaling like the collision frequencies were neglected in

favor of terms scaling like the plasma frequencies. However, the growth rates can be

comparable in size to co 1/3 2/3 which is about the same size as the largest collision
frequency, the positron-positron collision frequency. This suggests that collisions play
an important role in the damping or growth of the mode. Fortunately, to leading ordcr,
positron-positron collisions are described by O'Neil's collision operator [20, 21 ]. Inclu-
sion of collisions is a logical next step in the calculations.
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